References¶
Click on each reference to see more details.
B¶
B15: Bach (2015) Biogeosciences
Bach, L. T. (2015). Reconsidering the role of carbonate ion concentration in calcification by marine organisms. Biogeosciences 12(16), 4939–4951. doi:10.5194/bg-12-4939-2015.
B76: Berner (1976) Am. J. Sci.
Berner, R. A. (1976). The solubility of calcite and aragonite in seawater at atmospheric pressure and 34.5 ‰ salinity. American Journal of Science 276, 713–730. doi:10.2475/ajs.276.6.713.
BTSP79: Broecker et al. (1979) Science
Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, T.-H. (1979). Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget. Science 206, 409–418. doi:10.1126/science.206.4417.409.
C¶
C65: Culkin (1965) in Chemical Oceanography
Culkin, F. (1965). “The major constituents of sea water,” in Chemical Oceanography, eds. J. P. Riley and G. Skirrow (London, UK: Academic Press), 121–161.
CP68: Culberson & Pytkowicz (1968) Limnol. Oceanogr.
Culberson, C., and Pytkowicz, R. M. (1968). Effect of pressure on carbonic acid, boric acid, and the pH in seawater. Limnology and Oceanography 13, 403–417. doi:10.4319/lo.1968.13.3.0403.
CW95: Clegg & Whitfield (1995) Geochim. Cosmochim. Acta
Clegg, S. L., and Whitfield, M. (1995). A chemical model of seawater including dissolved ammonia and the stoichiometric dissociation constant of ammonia in estuarine water and seawater from −2 to 40°C. Geochimica et Cosmochimica Acta 59, 2403–2421. doi:10.1016/0016-7037(95)00135-2.
CW98: Cai & Wang (1998) Limnol. Oceanogr.
Cai, W.-J., and Wang, Y. (1998). The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnology and Oceanography 43, 657–668. doi:10.4319/lo.1998.43.4.0657.
D¶
D90a: Dickson (1990) J. Chem. Thermodyn.
Dickson, A. G. (1990). Standard potential of the reaction: AgCl(s) + 0.5 H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K. Journal of Chemical Thermodynamics 22, 113–127. doi:10.1016/0021-9614(90)90074-Z.
D90b: Dickson (1990) Deep-Sea Res. Pt. A
Dickson, A. G. (1990). Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Research Part A 37, 755–766. doi:10.1016/0198-0149(90)90004-F.
DM87: Dickson & Millero (1987) Deep-Sea Res. Pt. A
Dickson, A. G., and Millero, F. J. (1987). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research Part A 34, 1733–1743. doi:10.1016/0198-0149(87)90021-5.
DOE94: DOE (1994) "Handbook of methods..."
DOE (1994). Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, version 2. ORNL/CDIAC-74.
DR79: Dickson & Riley (1979) Mar. Chem.
Dickson, A. G., and Riley, J. P. (1979). The estimation of acid dissociation constants in sea-water media from potentiometric titrations with strong base. II. The dissociation of phosphoric acid. Marine Chemistry 7, 101–109. doi:10.1016/0304-4203(79)90002-1.
E¶
EG70: Edmond & Gieskes (1970) Geochim. Cosmochim. Acta
Edmond, J. M., and Gieskes, J. M. T. M. (1970). On the calculation of the degree of saturation of sea water with respect to calcium carbonate under in situ conditions. Geochimica et Cosmochimica Acta 34(12), 1261–1291. doi:10.1016/0016-7037(70)90041-4.
ESM10: Egleston et al. (2010) Global Biogeochem. Cycles
Egleston, E. S., Sabine, C. L., and Morel, F. M. M. (2010). Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Global Biogeochemical Cycles 24, GB1002. doi:10.1029/2008GB003407.
F¶
FCG94: Frankignoulle et al. (1994) Limnol. Oceanogr.
Frankignoulle, M., Canon, C., and Gattuso, J.-P. (1994). Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO2. Limnology and Oceanography 39, 458–462. doi:10.4319/lo.1994.39.2.0458.
G¶
GG46: Goff & Gratch (1946) Trans. Am. Heat. Vent. Eng.
Goff, J. A., and Gratch, S. (1946). Low-pressure properties of water from -160 to 212 °F. Transactions of the American Society of Heating and Ventilating Engineers 52, 95–122.
GP89: Goyet & Poisson (1989) Deep-Sea Res. Pt. A
Goyet, C., and Poisson, A. (1989). New determination of carbonic acid dissociation constants in seawater as a function of temperature and salinity. Deep-Sea Research Part A 36, 1635–1654. doi:10.1016/0198-0149(89)90064-2.
H¶
H73a: Hansson (1973) Deep-Sea Res.
Hansson, I. (1973). A new set of acidity constants for carbonic acid and boric acid in sea water. Deep-Sea Research 20, 461–478. doi:10.1016/0011-7471(73)90100-9.
H73b: Hansson (1973) Acta Chem. Scand.
Hansson, I. (1973). The Determination of Dissociation Constants of Carbonic Acid in Synthetic Sea Water in the Salinity Range of 20–40 ‰ and Temperature Range of 5–30°C. Acta Chemica Scandinavica 27, 931–944. doi:10.3891/acta.chem.scand.27-0931.
HDW18: Humphreys et al. (2018) Mar. Chem.
Humphreys, M. P., Daniels, C. J., Wolf-Gladrow, D. A., Tyrrell, T., and Achterberg, E. P. (2018). On the influence of marine biogeochemical processes over CO2 exchange between the atmosphere and ocean. Marine Chemistry 199, 1–11. doi:10.1016/j.marchem.2017.12.006.
HLSP22: Humphreys et al. (2022) Geosci. Model Dev.
Humphreys, M. P., Lewis, E. R., Sharp, J. D., and Pierrot, D. (2021). PyCO2SYS v1.8: marine carbonate system calculations in Python. Geoscientific Model Development 15, 15–43. doi:10.5194/gmd-15-15-2022.
HSS22: Humphreys et al. (2022) "PyCO2SYS: marine carbonate..."
Humphreys, M. P., Schiller, A. J., Sandborn, D. E., Gregor, L., Pierrot, D., van Heuven, S. M. A. C., Lewis, E. R., and Wallace, D. W. R. (2022). PyCO2SYS: marine carbonate system calculations in Python. Zenodo. doi:10.5281/zenodo.3744275.
HPR11: van Heuven et al. (2011) "CO2SYS v1.1, MATLAB..."
van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E., and Wallace, D. W. R. (2011). CO2SYS v 1.1, MATLAB program developed for CO2 system calculations. ORNL/CDIAC-105b, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USA. doi:10.3334/CDIAC/otg.CO2SYS_MATLAB_v1.1.
I¶
I75: Ingle (1975) Mar. Chem.
Ingle, S. E. (1975). Solubility of calcite in the ocean. Marine Chemistry 3, 301–319. doi:10.1016/0304-4203(75)90010-9.
ICHP73: Ingle et al. (1973) Mar. Chem.
Ingle, S. E., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M. (1973). The solubility of calcite in seawater at atmospheric pressure and 35‰ salinity. Marine Chemistry 1, 295–307. doi:10.1016/0304-4203(73)90019-4.
K¶
KP67: Kester & Pytkowicz (1967) Limnol. Oceanogr.
Kester, D. R., and Pytkowicz, R. M. (1967). Determination of the Apparent Dissociation Constants of Phosphoric Acid in Seawater. Limnology and Oceanography 12, 243–252. doi:10.4319/lo.1967.12.2.0243.
KRCB77: Khoo et al. (1977) Anal. Chem.
Khoo, K. H., Ramette, R. W., Culberson, C. H., and Bates, R. G. (1977). Determination of hydrogen ion concentrations in seawater from 5 to 40C: standard potentials at salinities from 20 to 45 per mille. Analytical Chemistry 49, 29–34. doi:10.1021/ac50009a016.
KSK18: Kuliński et al. (2018) Mar. Chem.
Kuliński, K., Szymczycha, B., Koziorowska, K., Hammer, K., Schneider, B. (2018). Anomaly of total boron concentration in the brackish waters of the Baltic Sea and its consequence for the CO2 system calculations. Marine Chemistry 204, 11-19. doi:10.1016/j.marchem.2018.05.007.
L¶
LDK00: Lueker et al. (2000) Mar. Chem.
Lueker, T. J., Dickson, A. G., and Keeling, C. D. (2000). Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Marine Chemistry 70, 105–119. doi:10.1016/S0304-4203(00)00022-0.
LKB10: Lee et al. (2010) Geochim. Cosmochim. Acta
Lee, K., Kim, T.-W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y.-M. (2010). The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochimica et Cosmochimica Acta 74, 1801–1811. doi:10.1016/j.gca.2009.12.027.
LTB69: Li et al. (1969) J. Geophys. Res.
Li, Y.-H., Takahashi, T., and Broecker, W. S. (1969). Degree of saturation of CaCO3 in the oceans. Journal of Geophysical Research 74, 5507–5525. doi:10.1029/JC074i023p05507.
LW98: Lewis & Wallace (1998) "Program developed for..."
Lewis, E., and Wallace, D. W. R. (1998). Program Developed for CO2 System Calculations. ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USA.
M¶
M10: Millero (2010) Mar. Freshwater Res.
Millero, F. J. (2010). Carbonate constants for estuarine waters. Marine and Freshwater Research 61(2), 139–142. doi:10.1071/MF09254.
M13: Munhoven (2013) Geosci. Model Dev.
Munhoven, G. (2013). Mathematics of the total alkalinity–pH equation – pathway to robust and universal solution algorithms: the SolveSAPHE package v1.0.1. Geoscientific Model Development 6, 1367–1388. doi:10.5194/gmd-6-1367-2013.
M16: Maclaurin (2016) Autograd: Automatic Differentiation...
Maclaurin, D. (2016). “Autograd: Automatic Differentiation for Python,” in Modeling, Inference and Optimization with Composable Differentiable Procedures (PhD thesis, Harvard University, Cambridge, MA), 41–57.
M79: Millero (1979) Geochim. Cosmochim. Acta
Millero, F. J. (1979). The thermodynamics of the carbonate system in seawater. Geochimica et Cosmochimica Acta 43, 1651–1661. doi:10.1016/0016-7037(79)90184-4.
M83: Mucci (1983) Am. J. Sci.
Mucci, A. (1983). The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science 283, 780–799. doi:10.2475/ajs.283.7.780.
Mi83: Millero (1983) in "Chemical Oceanography"
Millero, F. J. (1983). “Influence of pressure on chemical processes in the sea,” in Chemical Oceanography, eds. J. P. Riley and R. Chester (Academic Press).
MS92: Millero & Sohn (1992) "Chemical Oceanography"
Millero, F. J., and Sohn, M. L. (1992). Chemical Oceanography. CRC Press, Florida, USA.
M95: Millero (1995) Geochim. Cosmochim. Acta
Millero, F. J. (1995). Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta 59, 661–677. doi:10.1016/0016-7037(94)00354-O.
MCHP73: Mehrbach et al. (1973) Limnol. Oceanogr.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M. (1973). Measurement of the Apparent Dissociation Constants of Carbonic Acid in Seawater at Atmospheric Pressure. Limnology and Oceanography 18, 897–907. doi:10.4319/lo.1973.18.6.0897.
MGH06: Millero et al. (2006) Mar. Chem.
Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H., and Pierrot, D. (2006). Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Marine Chemistry 100, 80–94. doi:10.1016/j.marchem.2005.12.001.
MM02: Mojica Prieto & Millero (2002) Geochim. Cosmochim. Acta
Mojica Prieto, F. J., and Millero, F. J. (2002). The values of pK1 + pK2 for the dissociation of carbonic acid in seawater. Geochimica et Cosmochimica Acta 66, 2529–2540. doi:10.1016/S0016-7037(02)00855-4.
MPL02: Millero et al. (2002) Deep-Sea Res. Pt. I
Millero, F. J., Pierrot, D., Lee, K., Wanninkhof, R., Feely, R., Sabine, C. L., et al. (2002). Dissociation constants for carbonic acid determined from field measurements. Deep-Sea Research Part I 49, 1705–1723. doi:10.1016/S0967-0637(02)00093-6.
MR66: Morris & Riley (1966) Deep-Sea Res.
Morris, A. W., and Riley, J. P. (1966). The bromide/chlorinity and sulphate/chlorinity ratio in sea water. Deep-Sea Research 13, 699–705. doi:10.1016/0011-7471(66)90601-2.
O¶
OE15: Orr & Epitalon (2015) Geosci. Model Dev.
Orr, J. C., and Epitalon, J.-M. (2015). Improved routines to model the ocean carbonate system: mocsy 2.0. Geoscientific Model Development 8, 485–499. doi:10.5194/gmd-8-485-2015.
OEG15: Orr et al. (2015) Biogeosciences
Orr, J. C., Epitalon, J.-M., and Gattuso, J.-P. (2015). Comparison of ten packages that compute ocean carbonate chemistry. Biogeosciences 12, 1483–1510. doi:10.5194/bg-12-1483-2015.
OEDG18: Orr et al. (2018) Mar. Chem.
Orr, J. C., Epitalon, J.-M., Dickson, A. G., and Gattuso, J.-P. (2018). Routine uncertainty propagation for the marine carbon dioxide system. Marine Chemistry 207, 84–107. doi:10.1016/j.marchem.2018.10.006.
P¶
PF87: Perez & Fraga (1987) Mar. Chem.
Perez, F. F., and Fraga, F. (1987). Association constant of fluoride and hydrogen ions in seawater. Marine Chemistry 21, 161–168. doi:10.1016/0304-4203(87)90036-3.
PLR18: Papadimitriou et al. (2018) Geochim. Cosmochim. Acta
Papadimitriou, S., Loucaides, S., Rérolle, V. M. C., Kennedy, P., Achterberg, E. P., Dickson, A. G., Mowlem, M., and Kennedy, H. (2018). The stoichiometric dissociation constants of carbonic acid in seawater brines from 298 to 267 K. Geochimica et Cosmochimica Acta 220, 55–70. doi:10.1016/j.gca.2017.09.037.
PTBO87: Peng et al. (1987) Tellus B
Peng, T.-H., Takahashi, T., Broecker, W. S., and Olafsson, J. (1987). Seasonal variability of carbon dioxide, nutrients and oxygen in the northern North Atlantic surface water: observations and a model. Tellus B 39, 439–458. doi:10.3402/tellusb.v39i5.15361.
R¶
R54: Robinson (1954) J. Mar. Biol. Ass. U.K.
Robinson, R. A. (1954). The vapour pressure and osmotic equivalence of sea water. Journal of the Marine Biological Association of the United Kingdom 33, 449–455. doi:10.1017/S0025315400008468.
R65: Riley (1965) Deep-Sea Res.
Riley, J. P. (1965). The occurrence of anomalously high fluoride concentrations in the North Atlantic. Deep-Sea Research 12, 219–220. doi:10.1016/0011-7471(65)90027-6.
RAH18: Richier et al. (2018) Glob. Change Biol.
Richier, S., Achterberg, E. P., Humphreys, M. P., Poulton, A. J., Suggett, D. J., Tyrrell, T., et al. (2018). Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity. Global Change Biology 24, 4438–4452. doi:10.1111/gcb.14324.
RRV93: Roy et al. (1993) Mar. Chem.
Roy, R. N., Roy, L. N., Vogel, K. M., Porter-Moore, C., Pearson, T., Good, C. E., et al. (1993). The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C. Marine Chemistry 44, 249–267. doi:10.1016/0304-4203(93)90207-5.
RT67: Riley & Tongudai (1967) Chem. Geol.
Riley, J. P., and Tongudai, M. (1967). The major cation/chlorinity ratios in sea water. Chemical Geology 2, 263–269. doi:10.1016/0009-2541(67)90026-5.
S¶
SB21: Schockman & Byrne (2021) Geochim. Cosmochim. Acta
Schockman, K. M., and Byrne, R. H. (2021). Spectrophotometric Determination of the Bicarbonate Dissociation Constant in Seawater. Geochemica Cosmochimica Acta, in press. doi:10.1016/j.gca.2021.02.008.
SLH20: Sulpis et al. (2020) Ocean Sci.
Sulpis, O., Lauvset, S. K., and Hagens, M. (2020). Current estimates of K1* and K2* appear inconsistent with measured CO2 system parameters in cold oceanic regions. Ocean Science 16(4), 847–862. doi:10.5194/os-2020-19.
SMB64: Sillén et al. (1964) Chem. Soc. London
Sillén, L. G., Martell, A. E., and Bjerrum, J. (1964). Stability constants of metal-ion complexes. Special Publication 17. London, UK: Chemical Society.
SPH20: Sharp et al. (2020) CO2-System-Extd
Sharp, J. D., Pierrot, D., Humphreys, M. P., Epitalon, J.-M., Orr, J. C., Lewis, E., Wallace, D. W. R. (2020). CO2-System-Extd, v3.0. MATLAB (MathWorks). Available from github.com/jonathansharp/CO2-System-Extd.
T¶
TOG93: Takahashi et al. (1993) Global Biogeochem. Cycles
Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland, S. C. (1993). Seasonal variation of CO2 and nutirents in the high-latitude surface oceans: a comparative study. Global Biogeochemical Cycles 7(4), 843-878. doi:10.1029/93GB02263.
TSW09: Takahashi et al. (2009) Deep-Sea Res. Pt. II
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research II 56, 554–577. doi:10.1016/j.dsr2.2008.12.009.
TWB82: Takahashi et al. (1982) in "GEOSECS Pacific Expedition"
Takahashi, T., Williams, R. T., and Bos, D. L. (1982). “Carbonate Chemistry,” in GEOSECS Pacific Expedition: Hydrographic Data (Washington, D. C.: National Science Foundation), 77–105.
U¶
U74: Uppström (1974) Deep-Sea Res.
Uppström, L. R. (1974). The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep-Sea Research 21, 161–162. doi:10.1016/0011-7471(74)90074-6.
W¶
W74: Weiss (1974) Mar. Chem.
Weiss, R. F. (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry 2, 203–215. doi:10.1016/0304-4203(74)90015-2.
WM13: Waters & Millero (2013) Mar. Chem.
Waters, J.F., Millero, F.J. (2013). The free proton concentration scale for seawater pH. Marine Chemistry 149, 8–22. doi:10.1016/j.marchem.2012.11.003.
WMW14: Waters et al. (2014) Mar. Chem.
Waters, J., Millero, F. J., and Woosley, R. J. (2014). Corrigendum to “The free proton concentration scale for seawater pH”, [MARCHE: 149 (2013) 8–22]. Marine Chemistry 165, 66–67. doi:10.1016/j.marchem.2014.07.004.
WP80: Weiss & Price (1980) Mar. Chem.
Weiss, R. F., and Price, B. A. (1980). Nitrous oxide solubility in water and seawater. Marine Chemistry 8, 347–359. doi:10.1016/0304-4203(80)90024-9.
WZK07: Wolf-Gladrow et al. (2007) Mar. Chem.
Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and Dickson, A. G. (2007). Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. Marine Chemistry 106, 287-300. doi:10.1016/j.marchem.2007.01.006.
Y¶
YM95: Yao & Millero (1995) Aquat. Geochem.
Yao, W., and Millero, F. J. (1995). The chemistry of the anoxic waters in the Framvaren Fjord, Norway. Aquatic Geochemistry 1, 53–88. doi:10.1007/BF01025231.
Z¶
ZW01: Zeebe & Wolf-Gladrow (2001) "CO2 in Seawater..."
Zeebe, R. E., and Wolf-Gladrow, D. (2001). CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier B.V., Amsterdam, the Netherlands.